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1. (a) Definc a countable set. Show that the set @ of rational numbers is collntab

(b) Define absolute value of a real number 'x’.
Find all x € R that satisfy the following inequalities:
(1) 4 < |x+2|+ |x-1]<5
(i1) 2x — 1] <x+1

(¢) (1) Define supremum of a non-empty bounded subset S of R.
(ii) Show that a real number u is the supremum of a non-empty subset S.0
only if it satisfies the following conditions:
(1)s <uforalls €8S.
(2) For each positive real number &, there exists s, € S such that u — € < Se-(é 6)

fR if and

(a) State the Archimedean Property of real numbers. Show that if x € R, then there exists
aunique n € Zsuchthat n—1<x <n.
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(b) Define the convergence of a s@uence (x,,) of real numbers. Using the definition,

Q
evaluate the following%@?}é:
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(c) Let (x,) be a'sequence of real numbers that converges to x and suppose that x,, > 0,

v n € N. Show that the sequence (Jx_n) converges to Vx .

(6,6)
3. (a) Prove that every monotonically decreasing and bounded below sequence of real numbers

converges.
(b) Show that the sequence (x,,) defined by
X =Lxyq = %(Zx,, +3), Vn > 1 is convergent. Also, find lim, .0 Xp.

(c) State Cauchy’s Convergence Criterion for sequences of real numbers. Show directly
from the definition that the following sequence is a Cauchy sequence:
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4. (a) State and prove Comparison test for positive term series. Hence, show it the following
serics converges:
1 1
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(b) Suppos tha (-\'7'.), is a sequence of non-negative real numbers. Prove that the series
¥ x, converges ifand only if the sequence § = (s) of partial sums is bounded

() (1) State (without proof) D Alembert's ratio test for an infinite scries.
(2) Testfor convergence the series:

: 1 1.2 1.2.3
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(6.5.6.5)

3. (a) (i) Define an absolutely convergent series. Is every convergent series absolutely
convergent? Justify your answer.
(i1) Test for convergence the series:
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(b) Show that if a > 0. then %&equence (1—::13;;3) converges uniformly on the interval

[a, o) but not unifo Qén the interval [0, o).
(c) State Weierstrass @ est for.uniform convergence of series. Hence. show that

1
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is uniformly convergent,
(6.5.6.5)

6. (a) Find the radius of convergence and exact interval of convergence of the power series
N n+1
n

(n+2)(n+3)"
(b) Show that the function f(x) = x* defined on the interval [0, b], where b > 0 is Riemann
integrable.
(¢) Show that every continuous function defined on [, b] is Riemann integrable.
(6.6)
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